Practical AI Roadmap Workbook for Business Executives
A clear, hype-free workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Smart thinking. Simple execution. Fast delivery.
Why This Workbook Exists
In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
It guides you to make rational decisions about AI adoption without hype or hesitation.
You don’t need to understand AI models or algorithms — just your workflows, data, and decisions. AI should serve your systems, not the other way around.
Using This Workbook Effectively
Work through this individually or with your leadership team. The purpose is reflection, not speed. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A realistic, step-by-step project plan.
Use it for insight, not just as a template. If your CFO can understand it in a minute, you’re doing it right.
AI planning is business thinking without the jargon.
Starting Point: Business Objectives
Start With Outcomes, Not Algorithms
The usual focus on bots and models misses the real point. Non-technical leaders should start from business outcomes instead.
Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which decisions are delayed because information is hard to find?
AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
AI fits only once you understand the real workflow. Ask: “What happens from start to finish in this process?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? AWS quote ? revision ? close/lost.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Every process involves what comes in, what’s done, and what moves forward. AI belongs where the data is chaotic, the task is repetitive, and the result is measurable.
Step Three — Choose What Matters
Score AI Use Cases by Impact, Effort, and Risk
Choose high-value, low-effort cases first.
Map your ideas to see where to start.
• Quick Wins — high impact, low effort.
• Strategic Bets — high impact, high effort.
• Minor experiments — do only if supporting larger goals.
• Avoid for Now — low impact, high effort.
Always judge the safety of automation before scaling.
Your roadmap starts with safe, effective wins.
Balancing Systems and People
Get the Basics Right First
Without clean systems, AI will mirror your chaos. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Keep Humans in Control
Let AI assist, not replace, your team. Over time, increase automation responsibly.
Avoid Common AI Pitfalls
Learn from Others’ Missteps
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Automation Mirage — expecting overnight change.
Fewer, focused projects with clear owners and goals beat scattered enthusiasm.
Working with Experts
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signs of a Strong AI Roadmap
How to Know Your AI Strategy Works
It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is the 3-month metric?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. A real roadmap is a disciplined sequence of high-value projects that strengthen your best people. When AI becomes part of your workflow quietly, it stops being hype — it becomes infrastructure.